T(5th Sm.)-Chemistry-H/Pr./DSE-B-1P/CBCS

2020

CHEMISTRY — HONOURS — PRACTICAL

Paper : DSE-B-1P

(Inorganic Materials of Industrial Importance)

Full Marks : 30

The figures in the margin indicate full marks.

- 1. For the estimation of the quantity of $CaCO_3$ and $MgCO_3$ present separately in a given dolomite sample in g :
 - (a) Write down the principle of dissolution and estimation mentioning all the equations involved and derive the working formula.
 - (b) Using the following data calculate the strength of \sim (M/50) EDTA solution :
 - (i) 1.1451 g of Zn-acetate dihydrate has been accurately weighed, transferred to a 250 mL volumetric flask and volume is made up with distilled water in presence of NH_4Cl .

(ii) Standardiz	$2^{1/2}+2^{1/2}$				
No. of	Volume of	Βι	mL)		
titrations	standard Zn- acetate taken (mL)	Initial	Final	Difference	Most frequent rcading
1	25	0	26.3	26.3	26.3
2	25	0	26.4	26.4	
3	25	0	26.3	26.3	

(c) 0.7678 g of the Dolomite sample has been weighed accurately and after dissolution step, the volume is made up to 250 mL in a volumetric flask.

Using the above data, calculate separately the amount of $CaCO_3$ and $MgCO_3$ present in the given Dolomite sample in g by using the following specimen results. 5+5

(i) Table for estimation of Ca^{II} and Mg^{II} :

No. of	Volume of stock solution taken (mL)	Burette reading of EDTA solution (mL)				
titrations		Initial	Final	Difference	Most frequent reading	
1	25	0	35.5	35.5	35.5	
2	25	0	35.5	35.5		
3	25	0	35.6	35.6		

T(5th Sm.)-Chemistry-H/Pr./DSE-B-1P/CBCS

(2)

(ii) Table for estimation of $\mathrm{Ca}^{\mathrm{II}}$:

No. of titrations	Volume of	Burette reading of EDTA solution (mL)				
	solution taken (mL)	Initial	Final	Difference	Most frequent reading	
1	25	0	18.7	18.7		
2	25	0	18.6	18.6	18.7	
3	25	0	18.7	18.7		

2020

CHEMISTRY — HONOURS — PRACTICAL

Paper : DSE-B-2P

(Novel Inorganic Solids)

Full Marks : 30

The figures in the margin indicate full marks.

Answer all questions.

1. For the determination of the $[K^+]$: $[H^+]$ ratio in the given KHSO₄ sample by cation exchange method :

- (a) Write down the principle mentioning all the equations involved and derive the working formula.
- (b) Using the following data calculate the strength of $\sim 0.02(N)$ NaOH solution. $2\frac{1}{2}+2\frac{1}{2}$
 - (i) 0.1311 g of oxalic acid has been accurately weighed, transferred to a 100 mL volumetric flask and volume is made up with distilled water.
 - (ii) Standardization of ~ 0.02 (N) NaOH by standard oxalic acid solution

No. of titrations	Volume of	Buret	Burette reading of NaOH solution (mL)				
	standard oxalic acid taken (mL)	Initial	Final	Difference	Most frequent reading		
1	5	0	5.5	5.5			
2	5	0	5.4	5.4	5.5		
3	5	0	5.5	5.5			

- (c) Using the above data, calculate the [K⁺] : [H⁺] ratio in the given KHSO₄ solution by using the following specimen results.
 5+5
 - (i) Standardization of KHSO₄ solution :

No.	of	Volume of	Burette reading of NaOH solution (mL)					
titrations		KHSO ₄ solution taken (mL)	Initial	Final	Difference	Most frequent reading		
1		5	0	5.7	5.7			
2		5	0	5.8	5.8	5.8		
3		5	0	5.8	5.8			

T(5th Sm.)-Chemistry-H/Pr./DSE-B-2P/CBCS

(ii) Table for estimation of $([K^+] + [H^+])$ after passing the solution through the cation exchange column in H⁺ form :

No. of	Volume of	Burette reading of NaOH solution (mL)				
utrations	solution taken (mL)	Initial	Final	Difference		
1	5	0.	11.5	11.5		

(2)